Automate the model lifecycle
Last updated
Last updated
As with any modern software development process, we eliminate manual steps where possible, to reduce the likelihood of errors happening. For ML solutions we make sure there is a defined process for moving a model into production and refreshing as needed. (Note that we do not apply this automation to the initial development and prototyping of the algorithms as this is usually an exploratory and creative activity.)
For an algorithm which has been prototyped, and accepted into production the life-cycle is:
Ingest the latest data.
Create training and test sets.
Run the training.
Check performance meets the required standard.
Version and redeploy the model.
In a fully automated lifecycle this process is repeated either on a schedule or triggered by the arrival of more recent data with no manual steps.
There are a variety of tools and techniques to help with this. Some of the tools we have found useful include:
AWS Sagemaker
GCP Vertex AI