MLOps
Equal ExpertsContact UsPlaybooks
  • Overview
    • Key terms
  • What is MLOps
  • Principles
    • Solid data foundations
    • Provide an environment that allows data scientists to create and test models
    • A machine learning service is a product
    • Apply continuous delivery
    • Evaluate and monitor algorithms throughout their lifecycle
    • MLOps is a team effort
  • Practices
    • Collect performance data
    • Ways of deploying your model
    • How often do you deploy a model?
    • Keep a versioned model repository
    • Measure and proactively evaluate quality of training data
    • Testing through the ML pipeline
    • Business impact is more than just accuracy - understand your baseline
    • Regularly monitor your model in production
    • Monitor data quality
    • Automate the model lifecycle
    • Create a walking skeleton/steel thread
    • Appropriately optimise models for inference
  • Explore
  • Pitfalls (Avoid)
    • User Trust and Engagement
    • Explainability
    • Avoid notebooks in production
    • Poor security practices
    • Don’t treat accuracy as the only or even the best way to evaluate your algorithm
    • Use machine learning judiciously
    • Don’t forget to understand the at-inference usage profile
    • Don’t make it difficult for a data scientists to access data or use the tools they need
    • Not taking into consideration the downstream application of the model
  • Contributors
Powered by GitBook
On this page
Export as PDF
  1. Practices

Keep a versioned model repository

In some cases you will want the ability to know why a decision was made, for example, if there is an unexpected output or someone challenges a recommendation. Indeed, in most regulated environments it is essential to be able to show how a given decision or recommendation was reached, so you know which version of your machine learning model was live when a specific decision was made. To meet this need you will need a store or repository of the models that you can query to find the version of the model in use at a given date and time.

In the past we have used a variety of ways to version our models:

  • S3 buckets with versioning enabled

  • S3 buckets with database to to store model metadata

  • MLflow model registry

  • DVC to version both the model and the data used to create that model

  • Cloud provider model registries (AWS Sagemaker, Google Vertex AI , Azure MLOps)

  • Some models can have their coefficients stored as text, which is versioned in Git

PreviousHow often do you deploy a model?NextMeasure and proactively evaluate quality of training data

Last updated 3 years ago